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ABSTRACT 

The hydrogen bonding characteristics of well-characterized 
nitrocellulose samples were studied by means of IR spec- 
troscopy.   Results obtained for nitrocellulose samples of vary- 
ing nitrogen content showed that the strength of the hydrogen 
bond increases with decreasing nitrogen content.   In addition, 
atmospheric moisture was found to hydrogen bond with 
nitrocellulose hydroxyl groups.   The implications of these 
findings on the deterring phase of the small arms propellant 
manufacturing process are discussed. 

INTRODUCTION 

A previous study [ 1] established that hydrogen bonding occurs 
between small arms propellant burning rate modifiers which are called 
deterrents (di-n-butyl phthalate, camphor, ethyl centralite, and methyl 
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centralite) and unesterified hydroxyl groups in nitrocellulose (NC). 
These deterrent molecules are diffused into the spherical NC-based 
small arms propellant grains in order to reduce the initial burning 
rate of the propellant bed when the surface area is at maximum.   A 
knowledge of the concentration profile of the deterrent molecule as a 
function of distance into the grain as well as the physical and chemical 
interactions involved is important for interior ballistic computer 
simulation and a host of manufacturing and storage problems.   An 
important consideration in describing the deterring mechanism is a 
determination of the factors which would reduce the possibility of 
hydrogen bonding between deterrent molecules and NC hydroxyl 
groups.   For this reason a detailed study of hydroxyl interaction in 
well-characterized NC samples was performed. 

A previous study based on measurement of y-OH in the IR region   « 
indicated that hydrogen bonding may occur in NC films.   Cherubin [2] 
determined the y-OH for NC films having two different nitration 
levels (11.8 and 5.7%N) and cellulose.   The reported y-OH for NC of 
11. 8%N was 3559 cm"1, for 5.7%N was 3597 cm"1, and for cellulose 
was 3356 cm"1.   These NC samples were not well characterized and 
no molecular weight or viscosity data was given.   Based on this data, 
it appears that the author concluded that hydrogen bonding does occur 
in NC and that it is enhanced by increasing nitrate ester presence. 

It should be pointed out that the 11.8%N NC corresponds to 0.8 
hydroxyl groups per repeat unit and that the 5.7%N NC corresponds to 
2.20 hydroxyl groups per repeat unit.   This raises the possibility that 
hydrogen bonding occurred within a repeat unit in the 5.7%N NC. 

EXPERIMENTAL 

The five well-characterized NC samples used in this study were 
obtained from Picatinny Arsenal.   Raw NC samples obtained from 
Hercules, Inc. were dissolved in acetone and then fractional precipa- 
tion was accomplished by meuns of the addition of various water/ 
acetone solutions having increasing water content.   Data for number 
and weight-average molecular weight calculations were obtained from 
a Waters Model 200 gel permeation chromatograph.   The solvent used 
in all cases for the gel permeation chromatography was acetone 
and the support medium was Porasil.   Five 4-ft columns of varying 
permeability Porasil 1500X, 1000X, 400X, 250X, and 60X were used. 

Nine polystyrene standards obtained from Waters were used to 
calibrate the chromatograph.   These standards ranged in molecular 
weight from 5,000 to 2,610,000.   Number- and weight-average 
molecular weights for the nitrocellulose were calculated using the 
summation of heights method and are given in Table 1.   NC samples 
of narrow molecular weight distribution are not commercially avail- 
able and this is the reason for the use of polystyrene standards.   It 
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TABLE 1.   Molecular Weight Data for Various Nitrogen Content NC 
Samples 

%NinNC Mw Mn Mw/Mn 

12.10 

12.20 

12.30 

'12.60 

13.16 

141,500 84,500 1.67 

154,800 92,400 1.68 

230,400 224,800 1.03 

139,600 90,450 1.54 

128,200 76,000 1.69 

should be pointed out that since the M    and M   were calculated from 
w n 

the chromatographic data, they are strongly dependent on the standards 
used to calibrate the GPC system.   For this reason the data are not as 
accurate as one would want.   However, the data does show the relative 
trends between samples with sufficient accuracy. 

All of the NC samples were dissolved in MC&B reagent grade ethyl 
acetate, and these solutions were cast as films on salt plates.   After 
film casting, the plates were placed in a vacuum desiccator and 
subjected to a roughing pump vacuum for several hours.   IR spectra 
for each sample were run with and without a dry air purge.   All spectra 
were obtained on a Perkin-Elmer IR spectrophotometer model 621. 

DISCUSSION 

The y-OH for the NC samples described in the experimental section 
were measured in the IR region and are reported in Table 2.   Significant 
interactions within a repeat unit were excluded since the range of the 
nitrogen content of the samples used corresponds to less than one 
hydroxyl group per repeat unit.   Table 2 includes the y-OH for each 
sample measured in atmosphere and under a dry air purge.   It can be 
seen that in all cases the y-OH for the samples measured in air were 
shifted to lower frequencies.   Further, a broad peak from 3620-3680 cm"1 

(with numerous shoulders) was present in all samples run in air but was 
absent in all samples run under the dry air purge. 

Measurement of y-OH in air did not give reproducible results as 
evidenced by the wide range of values reported in Table 2.   This was 
not the case for the samples run under purge conditions. 

Therefore, it appears that atmospheric moisture is involved in a NC 
hydroxyl group interaction.   In order to gain further insight into the 
suspected water-NC interaction, several spectra were run of NC 



12.10 3514 

12.20 3502-3536 

12.30 3514 

12.60 3528-3532 

13.16 3528-3550 
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TABLE 2.   y-OH for Various Nitrogen Content NC Samples 

%NinNC y-OH11 {cm'1) r-OHb(cm-1) 

3525 

3544 

3538-3540 

3558 , 

3560 

^un in air, expanded spectra (represents five runs). 
bRun under purge condition, expanded spectra (represents five runs). 

exposed to deuterium oxide.   The only noticeable effect was a signifi- 
cant reduction in intensity of the 3620-3680 cm-1 peak.   Unfortunately, 
the D20 related shift of the 3620-3680 cm-1 peak could not be 
observed, either because of low intensity or interference with a NC 
and D20 peak.   Another complicating factor was the presence of some 
H20-NC interaction as evidenced by the persistence of a peak at 
3620-3680 cm"1. 

Examination of the data for the purge runs shows a trend toward 
higher frequencies with increasing nitrogen content.   The only excep- 
tion is the 12.3%N NC sample.   This trend corresponds to stronger 
hydrogen bond formation with increasing number of hydroxyl groups. 
The four samples which followed this trend had a very similar 
M  /M    (Table 1), while the 12.3%N NC had a significantly lower 

w     n v ' 
value, indicating a much narrower molecular weight distribution. It 
therefore appears that the molecular weight uniformity of NC in- 
fluences the strength of the hydrogen bonds. 

The findings of this study are contrary to the conclusion of Cherubin 
[ 2] who believes that the —ON02 group participated in hydrogen bond- 
ing and that an increase in nitrogen content led to strong hydrogen 
bonds.   The spectra for each sample used in this study were examined 
in the —ON02 asymetric stretch region (1650 cm"1) [3] and no shift 
was observed.   Thus it appears that the —ON02 group does not par- 
ticipate in hydrogen bonding under these conditions.   The conclusions 
of this study are that hydrogen bonding does occur in NC and that this 
bonding is only due to hydroxyl interactions.   Further, the strength 
of this interaction increases with the number of OH groups present. 
Finally, the NC-OH groups can enter into weak hydrogen bonding with 
water. 

The implications of these findings on the deterrent concentration 
profile for small arms propellant will now be briefly discussed. 
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Interaction between NC hydroxyl groups are in all cases weaker than 
the deterrent carbonyl-NC hydroxyl interaction.   With higher nitrogen 
contents, the NC-OH interaction becomes even weaker.   The weakest 
interaction obtained in this study was with the 13.1%N NC which is 
approximately the nitrogen content used for small arms propellants. 
Therefore, it appears that the interaction between NC hydroxyl groups 
would not prevent the bonding of deterrent during impregnation. 
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